
NoteRecall: Efficient and Privacy-Preserving On-Device Notes Retrieval
and Question Answering System

Nivedhitha Dhanasekaran
ndhanase

Kshitish Ghate
kghate

Jivitesh Jain
jivitesj

Vishwa Shah
vishwavs

Abstract

We present NoteRecall, a novel and effi-
cient on-device retrieval-augmented genera-
tion (RAG) system for privacy-preserving ques-
tion answering. Our system enables secure
retrieval of user-provided documents, such
as medical records, and generates accurate,
evidence-based responses entirely offline. Built
using state-of-the-art embedding models and
instruction-tuned language models, NoteRe-
call leverages quantization, efficient indexing,
and optimization techniques to ensure compu-
tational feasibility on consumer devices like
Apple M2-powered MacBooks. We benchmark
performance on the BioASQ dataset, demon-
strating competitive accuracy while maintain-
ing low latency and resource usage. Our results
highlight the feasibility of deploying robust AI
applications locally, safeguarding data privacy
while enabling high-quality user experiences1.

1 Introduction

The increasing reliance on cloud-based solutions
for managing sensitive personal documents, such
as personal notes and medical records, has raised
significant concerns regarding privacy and data
security. Popular productivity tools powered by
cloud-based computation resources (e.g., Notion
and Microsoft Loop’s "AI Helpers" 2) often process
user data through third-party large language model
(LLM) providers. These systems subject data to
varying terms of service, geographic and jurisdic-
tional boundaries, and potential vulnerabilities to
breaches or unauthorized access. These risks are
particularly critical in sensitive domains like health-
care, where maintaining patient confidentiality is
paramount.

At the same time, there is growing interest in
on-device note-taking and document management
tools, such as simple text editors or open-source

1https://github.com/nive927/note-recall/
2https://www.notion.so/product/ai

solutions like Obsidian.3 While these tools priori-
tize privacy by avoiding cloud-based data process-
ing, they often lack the AI-driven context-aware
capabilities that modern users demand. This gap
between privacy and utility underscores the need
for innovative solutions.

2 Motivation

The development of an on-device retrieval-
augmented generation (RAG) system like NoteRe-
call matters because it addresses a critical intersec-
tion of privacy, usability, and computational effi-
ciency in modern AI applications. Ensuring that
sensitive personal data remains private while pro-
viding intelligent and context-aware features is a
key challenge that existing cloud-based systems
fail to solve.

Our specific focus on enabling AI systems to run
entirely on-device is crucial for several reasons:

1. Privacy and Security: Sensitive personal
data, such as medical records and private
notes, must remain secure. By eliminating
the need for data to leave the user’s device,
NoteRecall ensures robust data privacy and
eliminates the risks associated with external
data processing and cloud-based breaches.

2. Autonomy and Reliability: On-device sys-
tems operate without reliance on an internet
connection, making them suitable for offline
or resource-constrained scenarios. This en-
sures users can access AI-driven insights re-
gardless of connectivity.

3. Unique Technical Challenges: On-device
systems must meet stringent requirements for
computational efficiency and energy use while
maintaining competitive performance. This
involves balancing resource constraints with

3https://obsidian.md/



the need for accurate retrieval and high-quality
answer generation, a trade-off often neglected
in cloud-centric systems.

Our work addresses these challenges by lever-
aging dense retrieval, quantization, and model dis-
tillation to create an energy-efficient and compu-
tationally feasible RAG pipeline for consumer de-
vices. Focusing on privacy-preserving architec-
tures, NoteRecall enables applications in highly
sensitive domains, such as healthcare, where exist-
ing solutions are either inadequate or unsuitable.
This combination of privacy, performance, and effi-
ciency makes NoteRecall a unique contribution to
the growing field of on-device AI.

3 Related Work

3.1 Sparse & Dense Retrieval Systems

Sparse retrieval methods like BM25, although
widely used for their simplicity and effectiveness,
underperformed in our context as they lacked se-
mantic depth. Instead, we adopted Dense Passage
Retrieval (DPR) (Karpukhin et al., 2020), which
generates semantically rich embeddings for query-
document matching. Dense retrieval’s superior per-
formance, particularly in technical domains such
as medicine, informed our selection of embedding
models benchmarked using MTEB (Muennighoff
et al., 2022). This ensured optimal retrieval perfor-
mance on our task-specific BioASQ dataset, which
comprises medical question-answer pairs.

3.2 Retrieval Augmented Generation (RAG)
& Question Answering (QA) Systems

RAG combines retrieval mechanisms with gener-
ative models for robust QA systems. Our archi-
tecture aligns with previous work in leveraging
instruction-tuned models like LLaMA (Meta, 2024)
for reader tasks. This approach strikes a balance be-
tween reasoning over retrieved contexts and main-
taining computational efficiency. While prior RAG
frameworks often focus on cloud-based setups, our
on-device adaptation with state-of-the-art embed-
ding and reader models demonstrated comparable
performance, as measured by retrieval recall and
BERTScore.

3.3 Vector Search and FAISS

Efficient vector search was a critical component,
handled using Facebook AI Similarity Search

(FAISS) (Douze et al., 2024a). FAISS’s Hierar-
chical Navigable Small World (HNSW) index of-
fered a balance between memory efficiency and
retrieval accuracy, suitable for our relatively small
knowledge corpus. Unlike earlier studies focused
on scaling FAISS to massive corpora, our work
concentrated on achieving interactive latency in a
constrained on-device environment.

3.4 Quantization Techniques for Efficient
Embedding and Retrieval

Quantization was instrumental in achieving our effi-
ciency goals. Guided by methodologies in Hugging
Face’s quantization practices (Shakir et al., 2024),
we employed naive and k-means quantization for
weight compression. The Q5_K_M and Q3_K_S
configurations from llama.cpp (Levrard, 2018) pro-
vided an effective trade-off between latency and
model performance.

3.5 Model Output Distillation
Our work aligns with the capabilities of efficient
models such as the Phi series (Gunasekar et al.,
2023; Li et al., 2023a), which leverage similar
strategies for preserving task performance while
reducing computational requirements. Model out-
put distillation proved effective for adapting large,
state-of-the-art models to on-device applications
without sacrificing quality.

3.6 Application
Incorporating private contexts is a growing area of
focus in QA systems, as demonstrated by bench-
marks like ConcurrentQA, which integrate private
data sources (e.g., emails) alongside public knowl-
edge (e.g., Wikipedia) (Arora et al., 2023). These
systems highlight the importance of managing
privacy-quality tradeoffs, often requiring selective
predictions based on confidence scores to optimize
performance over sensitive data. Unlike Concur-
rentQA, which uses Split Iterative Retrieval (SPI-
RAL) for hybrid public-private retrieval, NoteRe-
call prioritizes strict data isolation by ensuring all
computations occur on-device, addressing privacy
concerns more directly. While ConcurrentQA sac-
rifices up to 19% performance due to reliance on
public retrieval models, NoteRecall’s dense retriev-
ers, fine-tuned on medical QA tasks like BioASQ,
minimize this gap. By focusing on a fully pri-
vate retrieval pipeline, our system extends these ap-
proaches to environments where private data must
remain entirely local, ensuring data privacy while



maintaining competitive retrieval and QA perfor-
mance.

3.7 Energy Efficiency

Energy considerations were central to our design
choices. Using tools like CodeCarbon 4, we quan-
tified the energy and carbon footprint of different
configurations, highlighting the environmental ben-
efits of on-device ML systems. For example, we
observed a significant reduction in energy consump-
tion when using quantized models compared to
their full-precision counterparts. By contextualiz-
ing these measurements with real-world activities
(e.g., smartphone charging, video streaming) (iea;
Kilgore), we emphasized the broader environmen-
tal implications of our approach.

4 Task Definition

This section defines the NoteRecall system, in-
cluding its inputs, outputs, evaluation metrics, and
datasets used.

Data Modalities. NoteRecall consumes and pro-
duces textual data in the form of documents used
for context, user queries, and generated answers.

• Inputs: User-provided textual documents
(e.g., medical records) and natural language
queries. We note that documents can be em-
bedded and indexed by NoteRecall in a batch
– appropriate for pre-existing documents – as
well as individually on-the-fly,useful as new
documents come in.

• Outputs: A ranked list of relevant documents
retrieved from the input corpus and a concise,
generated answer to the query based on the
retrieved documents.

Target Hardware Platform. As most people use
personal laptops for creating, reading, and stor-
ing documents, we optimize NoteRecall to run on
personal laptops and computers. Specifically, we
consider the Apple MacBook Pro with an Apple Sil-
icon M2 processor as our target hardware. The pro-
cessor contains 10 CPU cores and 16 GPU cores.

Evaluation Metrics. We report the following
metrics for quantifying NoteRecall’s performance:

• Performance Metrics: We use BERTScore
F1 between the generated and ground truth

4https://github.com/mlco2/codecarbon

answers as a measure of their semantic simi-
larity. While we experimented with other met-
rics such as ROUGE and exact match scores,
we found BERTScore to be the most corre-
lated with our qualitative assessment of out-
put quality without overly penalizing phrasing
variations.

• Efficiency Metrics: We report the end-to-end
inference latency (in seconds) of the entire
pipeline as our efficiency metric. As ours is
an interactive system, this end-to-end latency
at inference time is what the user notices and
cares about. We also report the number of
inference cycles we can execute on a 10 Wh
power supply as a measure of NoteRecall’s
power consumption.

Dataset. As private medical documents are our
most prominent use case, we train and test NoteRe-
call on the BioASQ Task B dataset,5 a question-
answering dataset on Bio-Medical documents. The
dataset contains the following:

• Documents: The dataset contains 3,680 med-
ical documents. We use all documents to con-
struct our knowledge corpus.

• Question-Answer Pairs: The dataset con-
tains 300 question-answer pairs with gold-
standard corresponding document label. We
use these for evaluating our system.

The BioASQ dataset is particularly suited for eval-
uating the NoteRecall system as it emphasizes
domain-specific, high-quality retrieval and QA
tasks, aligning closely with the project’s objectives.

5 Methods

The NoteRecall system employs a retrieval-
augmented generation (RAG) pipeline for privacy-
preserving, on-device question answering. The
pipeline integrates three key components: a vector
database for efficient similarity-based retrieval, an
embedding model for converting text into dense
representations, and a reader model for generating
answers from retrieved documents. At the indexing
stage, the knowledge corpus is divided into chunks
of 512 tokens, which are embedded using the se-
lected embedding model and stored in the vector

5https://huggingface.co/datasets/BastienHot/
BioASQ-Task-B-Revised

https://huggingface.co/datasets/BastienHot/BioASQ-Task-B-Revised
https://huggingface.co/datasets/BastienHot/BioASQ-Task-B-Revised


database. During inference, the user query is em-
bedded similarly and matched against the stored
document embeddings to retrieve the top k = 3
most relevant documents. These retrieved docu-
ments are provided as context to the reader model,
which synthesizes a natural language answer based
on the query and context. We leverage hardware-
specific optimizations such as Apple’s Metal frame-
work 6 to optimize the system for on-device deploy-
ment. This includes leveraging PyTorch’s Metal
Performance Shading (MPS), llama.cpp and Ap-
ple’s ML-eXplore (MLX) for GPU acceleration.
The comparative performance for some of these
implementations is analyzed in Section 6.6.

We use the GTE Qwen-2 1.5B Instruct model (Li
et al., 2023b) for embedding generation (dembed =
1536) due to its competitive performance on the
MTEB benchmark (Muennighoff et al., 2022),
Meta’s Llama 3.2 1B Instruct model (et al., 2024)
as the reader, and FAISS (FaceBook AI Similarity
Search) (Douze et al., 2024b) as the vector database.
Owing to the relatively small size of our knowledge
corpus, we are able to use a high-fidelity nearest
neighbor search algorithm (Hierarchical Navigable
Small World) (Malkov and Yashunin, 2016) despite
its relatively large memory consumption.

As embedding generation is not autoregressive,
it can be parallelized effectively and takes signifi-
cantly lesser time than text generation. As a result,
the reader model tends to be efficiency bottleneck
of our pipeline and the focus of our optimization
efforts. We explore this tradeoff in Section 6.3.
Further, any performance degradation in retrieval
takes a significant toll on our task performance, as
relevant context is essential for accurate generation.
Consequently, unless specified otherwise, the fol-
lowing model compression techniques are applied
to the reader model.

5.1 Pruning

We perform the following structured and unstruc-
tured pruning techniques on the reader model and
report results in Section 6.1.

Random Layer Pruning. This structured prun-
ing technique removes entire non-embedding, non-
causal-LM layers of the model at random. While
it achieves significant efficiency improvements in
terms of reduced computation and memory, it also
adversely affects performance as the removed lay-

6https://developer.apple.com/metal/

ers disrupt both their own functions and the down-
stream input distributions.

L1 Magnitude Pruning of Feed-Forward Layers.
This unstructured pruning technique is applied to
feed-forward layers, the most parameter-dense lay-
ers. Weights with low L1 norms along specific
dimensions are pruned under the hypothesis that
their low magnitude indicates their low importance
in maintaining model functionality.

L1 Magnitude Pruning of Attention Projection
Matrices. Rows and columns of the attention ma-
trices (Q, K, V , and O) are pruned based on their
L1 norms, effectively nullifying low-activation re-
gions in the query-key and value spaces. While this
is a structured pruning technique, it requires the
use of specialized sparsity-aware libraries to take
advantage of the nullified rows and columns.

Random Pruning of Entire Attention Heads.
This structured pruning technique randomly re-
moves a subset of attention heads. We implement
this in two ways, (1) by only nullifying the corre-
sponding matrices, and (2) by physically removing
those matrices. While these two techniques lead
to identical performance, the latter leads to signif-
icant efficiency gains due to the physical removal
of matrices corresponding to certain heads.

Why Pruning? Although pruning is a commonly
used model compression technique, it is of lim-
ited utility for our use case due to the significant
drop in model performance (see Section 6.1). Fur-
ther, many pruning techniques require the use of
sparsity-aware matrix operations to realize effi-
ciency gains, which are not available for our hard-
ware.

5.2 Quantization

We experiment with several post-training quantiza-
tion techniques on the reader model. Specifically,
we focus on k-means quantization, which groups
and quantizes blocks of parameters with similar
magnitude separately, insulating each block from
outlier effects of other blocks. We report our results
in Section 6.2.

Llama.cpp7 and Hugging Face Optimum
Quanto8 are two popular quantization frameworks.
We find no efficiency gains from static or dynamic

7https://github.com/ggerganov/llama.cpp
8https://github.com/huggingface/

optimum-quanto

https://developer.apple.com/metal/
https://github.com/ggerganov/llama.cpp
https://github.com/huggingface/optimum-quanto
https://github.com/huggingface/optimum-quanto


quantization with the latter, owing to its lack of
comprehensive support for our target hardware. As
a result, we use Llama.cpp for our experiments, ow-
ing to its native support for Apple Silicon via Metal,
support for k-means quantization, and optimized
serialization format (GGUF).

Why Quantization? Quantization is essential for
reducing the computational and memory demands
of large models, making them more suitable for on-
device deployment. By representing model weights
with lower precision, such as 8-bit or even fewer
bits, quantization significantly reduces model size
and inference latency while maintaining compara-
ble performance. This is particularly important for
our task, as the NoteRecall system must operate
efficiently on devices with constrained resources.
Additionally, quantization enables a seamless trade-
off between efficiency and accuracy, allowing us to
adapt to the diverse hardware capabilities of user
devices. It is a practical and scalable approach to
achieve the high performance required for privacy-
preserving, on-device retrieval-augmented genera-
tion systems.

5.3 Mixture-of-Experts Architecture
We also compare standard decoder models to the re-
cent mixture-of-expert style models (MoE) (Jiang
et al., 2024; Team, 2024). The key to MoEs’ effi-
ciency lies in their sparse activation mechanisms.
Unlike dense models that activate all parameters for
every input, MoEs selectively activate only a subset
of experts for each task. For this ablation, we com-
pare the performance of Qwen-1.5-MoE-A2.7B
(MoE) and Qwen1.5-7B (standard). In theory, this
MoE model should achieve the performance of a
7B model with the inference latency of a 2B model.
In practice, we do not see these performance gains
(see Section 6.4).

Why MoE? By activating only the most relevant
experts for each input, MoE models can handle
massive amounts of data with far fewer compu-
tational resources. This is particularly important
for larger models like in our case, where process-
ing time and memory requirements can quickly
become prohibitive.

5.4 Model Distillation
Model distillation is a technique used to transfer
knowledge from a larger, more capable teacher
model to a smaller, more efficient student model.
We apply this technique to the reader, distilling

Llama’s knowledge into the much smaller Flan-
T5-Base model (Chung et al., 2022). We gener-
ated 3,327 additional questions from unutilized pas-
sages in the corpus with Llama 3.1 7B Instruct, and
then generated answers for each using our reader
model with the ground truth context to use as fine-
tuning data for the student model. See Section 6.5
for our results.

Why Distillation? Model distillation is a practi-
cal and scalable solution for achieving high per-
formance in resource-constrained environments.
While using synthetic data instead of gold-standard
ground truth seems counter-intuitive, it allows the
student model to focus on signals already extracted
by the larger teacher model, reducing the effect
of noise present in the gold-standard training data.
It allows for the teacher model’s capabilities to
be retained to a large extent with the significantly
smaller computational footprint of the student. This
makes it an ideal technique for our pipeline, where
both computational efficiency and task relevance
are critical.

6 Results and Discussion

For all our results below, the latency is the total
latency of retrieval using query and answer genera-
tion with reader for a single instance. We compute
this as the average latency across instances. We
present a combined plot of a subset of our exper-
iments for performance vs latency in Fig 4 and
performance vs budget in 5. Our baseline is de-
noted by 1 which involves both reader and retriever
in full precision.

6.1 Pruning

We present our results of pruning the reader in
Table 1. We apply different structured pruning
methods as described earlier along with unstruc-
tured pruning. Since we use torch for implementing
these pruning methods, the results are based on the
torch’s mps accelerator for Mac. In Table1, We see
a clear drop in the disk space as the global sparsity
rate increases, however, the change in latency is
quite low and further leads to significant drop in
performance. We also experiment with unstruc-
tured pruning without and with quantization config
Q5_K_M with llama.cpp and present the results in
points 10, 11 in Fig 4.



Table 1: Results of various pruning techniques. Unless specified otherwise, the local sparsity rate of the module
being pruned is 0.33.

Pruning Technique
Global
Sparsity
Rate

BertScore
F1 Latency (s) Disk

Space (MB)

Base Model 0.000 0.5715 8.5 2358
Random Layers 0.330 0.2631 5.58 1778
L1 MLP Layers 0.177 0.246 7.92 2370
L1 Attn. Matrices 0.037 0.2916 8.24 2358
Random Attn. Q Heads 0.028 0.3638 7.63 2358
Random Attn. KV Heads 0.034 0.4015 8.38 2370
Random Attn. KV Heads
(Physical)

0.034 0.4015 6.96 2278

Pruning + Quantization 0.330 0.27150 4.61 1260

Model
LLaMA3.2-1B-inst Latency (s) BERTScore

F16 1.99 0.5693
+ Q5_K_M 1.9 0.5582
+ Q3_K_S 1.45 0.4783

Table 2: Quantizing the reader model

6.2 Quantization

GGML via llama.cpp provides several quantization
settings. 9 We experiment with different range of
compressions: Q3_K_S, Q_5_K_M, Q8_0 for the
reader model, where the number denote the bit pre-
cision, K denotes k-means quantization and M/S
denote the size depending on number of Feed for-
ward and Attention layers/weight blocks quantized.
You can find more implementation details about
the specific quantized layers in the PR9. llama.cpp
utilizes GPU and provides considerable speed-up
with 3-bit and 5-bit quantization without signifi-
cant drop in performance unlike pruning as seen in
Table 2.

6.3 Retriever vs Reader Trade-off

Top-K We analyse the number passages to be re-
trieved as input sequence length is proportional to
the latency. As shown in points 1 (Top-3), 2 (Top-
1), 3 (Top-5) in Fig4 and 1, Top-3 works best con-
sidering trade-off between latency and context per-
formance. However, retrieval recall drop is recov-
erable owing to reader’s inherent memory which

9https://github.com/ggerganov/llama.cpp/pull/
1684

Figure 1: Varying Top-K passages to be retrieved

leads to lesser drop in final BERTScore, making 2:
Top-1 an efficient system.

Quantizing Retriever vs Reader Additionally,
since we use similar capacity retriever and reader,
we compare quantization for the retriever and
reader to study its tradeoff for efficiency. We apply
Quantization settings Q5_K_M, Q3_K_S to both
retriever and reader with llama.cpp in 4, 5, 6, 7
respectively in Fig 4. Efficiency gains are predomi-
nantly driven by latency of the reader as retrieval
encoding is largely parallelized while reader decod-
ing is proportional to generated sequence length
as can be seen in Fig 2. We note that 7: Q3_K_S
Reader quantization provides decent performance
with improvement while also reducing latency.

6.4 Mixture-of-Experts Architecture

To compare architecture variance in 8 and 9, we
analyze difference between Qwen-1.5-MoE-A2.7B
and Qwen1.5-7B (Team, 2024), where the MoE has

https://github.com/ggerganov/llama.cpp/pull/1684
https://github.com/ggerganov/llama.cpp/pull/1684


Figure 2: Quantizing Retriever vs Reader

Model Latency(s) BERT
Score

Qwen1.5-7B 3.1 0.4162
Qwen-1.5-MoE-A2.7B 8.3 0.5683

Table 3: Comparing different model architectures

Model Latency (s) BERTScore

Flan-T5-Base 1.02 0.4732
+ Distilled FT 1.03 0.5597

Table 4: Model Distillation with output fine-tuning

2.7B activated parameters. Performance with MoE
is much better as it is higher capacity However
latency is higher as M2’s unified memory cannot
fully load 14B model, leading to loading + un-
loading bottlenecks with MoE routing as shown in
Table 3.

6.5 Model Distillation
Flan-T5’s zero-shot performance is not comparable
with LLaMA but is almost 2x more efficienct with
respect to latency. To leverage this speedup, we use
model output distillation, This style of fine-tuning
helps substantially improve Flan-T5’s performance,
making it comparable to LlaMA as seen in base
and fine-tuned ablations 12, 13 in Fig 4 and Table 4.
Since Flan-T5 is not supported fully by llama.cpp,
we use MLX for inference. (MLX and llama.cpp
give similar runtime for other models)

6.6 Comparing Frameworks
Lastly, we also evaluate difference in frameworks -
we observe MLX provides better performance than
MPS, owing to MLX being optimized for M2 chips
and with the ability to completely utilize unified
memory as seen in Fig 3.

Conclusion Lastly we also provide a perfor-
mance under budget curve to compare BERTScore
vs Number of inference steps we can run under
10Wh in Fig 5. From both Fig 5 and Fig 4, we
see that our fine-tuned FlanT5 model (point 13)
can perform the highest number of inferences with
competent performance, almost 2.4x speedup with
respect to the baseline performance. Quantizing
LLaMA Q3_K_S (point 7) provides the next best
speedup with some drop in performance and a ben-
eficial method for training or finetuning free opti-
mization.



Figure 3: MPS vs MLX performance

Figure 4: Performance vs Inference Latency across ex-
periments

Figure 5: Performance under 10Wh Budget across ex-
periments

7 Key Challenges

1. Latency Bottleneck in the Reader: The in-
teractive nature of NoteRecall necessitates
serial execution of the retriever and reader
models. While the retriever’s latency can be
minimized through parallelization, the reader
remains a significant bottleneck due to its pro-
portional dependence on the sequence length
during decoding.

2. Performance Dependency on Retriever:
The generation quality is tightly coupled to
the retriever’s ability to provide relevant con-
text. This limitation is particularly evident in
technical domains like medicine, where highly
accurate retrieval is necessary for meaningful
answers.

3. Nascent On-Device ML Libraries for Ap-
ple Silicon: PyTorch’s Metal Performance
Shaders (MPS), while available, are not as
optimized as Apple’s proprietary MLX frame-
work. Experimenting with MLX required sub-
stantial reimplementation, slowing develop-
ment.

4. Resource Constraints on GPU: Apple Sil-
icon’s unified memory architecture creates
challenges in simultaneously loading both the
retriever and reader models. This limitation
either caps the model size or necessitates fre-
quent on- and off-loading, increasing latency.

8 Insights and Future Work

1. Model Distillation: Reducing the reader
model’s size through model distillation is
a promising avenue. Training a smaller
model using the outputs of the current reader
can maintain performance while reducing re-
source requirements.

2. Task-Specific Fine-Tuning: Fine-tuning
models on specific domains, such as medi-
cal documents, could enhance performance.
For broader applicability, a mixture of expert
models fine-tuned on distinct domains may be
an effective strategy.

3. Optimizing Retrieval Index: While HNSW
provided high fidelity for the small corpus, it
is memory-intensive. Exploring alternative
indexing methods and distance metrics may



allow scalability to larger corpora while pre-
serving efficiency.

4. Enhanced On-Device ML Libraries: Advo-
cating for broader support and optimization
of on-device libraries like MLX can signifi-
cantly boost efficiency and enable seamless
integration of larger models without reimple-
mentation overhead.

References
The carbon footprint of streaming video: fact-checking

the headlines – Analysis - IEA — iea.org. [Accessed
14-10-2024].

Simran Arora, Patrick Lewis, Angela Fan, Jacob Kahn,
and Christopher Ré. 2023. Reasoning over public
and private data in retrieval-based systems. Transac-
tions of the Association for Computational Linguis-
tics, 11:902–921.

Hyung Won Chung, Le Hou, Shayne Longpre, Barret
Zoph, Yi Tay, William Fedus, Eric Li, Xuezhi Wang,
Mostafa Dehghani, Siddhartha Brahma, Albert Web-
son, Shixiang Shane Gu, Zhuyun Dai, Mirac Suz-
gun, Xinyun Chen, Aakanksha Chowdhery, Sharan
Narang, Gaurav Mishra, Adams Yu, Vincent Zhao,
Yanping Huang, Andrew Dai, Hongkun Yu, Slav
Petrov, Ed H. Chi, Jeff Dean, Jacob Devlin, Adam
Roberts, Denny Zhou, Quoc V. Le, and Jason Wei.
2022. Scaling instruction-finetuned language mod-
els.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024a. The faiss library.

Matthijs Douze, Alexandr Guzhva, Chengqi Deng, Jeff
Johnson, Gergely Szilvasy, Pierre-Emmanuel Mazaré,
Maria Lomeli, Lucas Hosseini, and Hervé Jégou.
2024b. The faiss library.

Dubey et al. 2024. The llama 3 herd of models.

Suriya Gunasekar, Yi Zhang, Jyoti Aneja, Caio
César Teodoro Mendes, Allie Del Giorno, Sivakanth
Gopi, Mojan Javaheripi, Piero Kauffmann, Gustavo
de Rosa, Olli Saarikivi, et al. 2023. Textbooks are all
you need. arXiv preprint arXiv:2306.11644.

Albert Q. Jiang, Alexandre Sablayrolles, Antoine
Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las
Casas, Emma Bou Hanna, Florian Bressand, Gi-
anna Lengyel, Guillaume Bour, Guillaume Lam-
ple, Lélio Renard Lavaud, Lucile Saulnier, Marie-
Anne Lachaux, Pierre Stock, Sandeep Subramanian,
Sophia Yang, Szymon Antoniak, Teven Le Scao,
Théophile Gervet, Thibaut Lavril, Thomas Wang,
Timothée Lacroix, and William El Sayed. 2024. Mix-
tral of experts.

Vladimir Karpukhin, Barlas Oğuz, Sewon Min, Patrick
Lewis, Ledell Wu, Sergey Edunov, Danqi Chen, and
Wen-tau Yih. 2020. Dense passage retrieval for
open-domain question answering. arXiv preprint
arXiv:2004.04906.

Georgette Kilgore. Carbon Footprint of a
Laptop vs MacBook vs Desktop Computer
vs iPhone — 8billiontrees.com. https://
8billiontrees.com/carbon-offsets-credits/
carbon-footprint-of-a-laptop/#:~:
text=A%20desktop%20computer%20emits%
20778,electricity%20consumption%20when%
20in%20use. [Accessed 14-10-2024].

Clément Levrard. 2018. Quantization/clustering: when
and why does k-means work?

Yuanzhi Li, Sébastien Bubeck, Ronen Eldan, Allie
Del Giorno, Suriya Gunasekar, and Yin Tat Lee.
2023a. Textbooks are all you need ii: phi-1.5 techni-
cal report. arXiv preprint arXiv:2309.05463.

Zehan Li, Xin Zhang, Yanzhao Zhang, Dingkun Long,
Pengjun Xie, and Meishan Zhang. 2023b. Towards
general text embeddings with multi-stage contrastive
learning. arXiv preprint arXiv:2308.03281.

Yury A. Malkov and Dmitry A. Yashunin. 2016. Effi-
cient and robust approximate nearest neighbor search
using hierarchical navigable small world graphs.
CoRR, abs/1603.09320.

Meta. 2024. Llama 3.2: Revolutionizing edge ai and
vision with open, customizable models.

Niklas Muennighoff, Nouamane Tazi, Loïc Magne, and
Nils Reimers. 2022. Mteb: Massive text embedding
benchmark. arXiv preprint arXiv:2210.07316.

Aamir Shakir, Tom Aarsen, and Sean Lee. 2024. Bi-
nary and scalar embedding quantization for sig-
nificantly faster cheaper retrieval. Hugging
Face Blog. Https://huggingface.co/blog/embedding-
quantization.

Qwen Team. 2024. Qwen1.5-moe: Matching 7b model
performance with 1/3 activated parameters".

https://doi.org/10.48550/ARXIV.2210.11416
https://doi.org/10.48550/ARXIV.2210.11416
http://arxiv.org/abs/2401.08281
http://arxiv.org/abs/2401.08281
http://arxiv.org/abs/2407.21783
http://arxiv.org/abs/2401.04088
http://arxiv.org/abs/2401.04088
https://8billiontrees.com/carbon-offsets-credits/carbon-footprint-of-a-laptop/#:~:text=A%20desktop%20computer%20emits%20778,electricity%20consumption%20when%20in%20use.
https://8billiontrees.com/carbon-offsets-credits/carbon-footprint-of-a-laptop/#:~:text=A%20desktop%20computer%20emits%20778,electricity%20consumption%20when%20in%20use.
https://8billiontrees.com/carbon-offsets-credits/carbon-footprint-of-a-laptop/#:~:text=A%20desktop%20computer%20emits%20778,electricity%20consumption%20when%20in%20use.
https://8billiontrees.com/carbon-offsets-credits/carbon-footprint-of-a-laptop/#:~:text=A%20desktop%20computer%20emits%20778,electricity%20consumption%20when%20in%20use.
https://8billiontrees.com/carbon-offsets-credits/carbon-footprint-of-a-laptop/#:~:text=A%20desktop%20computer%20emits%20778,electricity%20consumption%20when%20in%20use.
https://8billiontrees.com/carbon-offsets-credits/carbon-footprint-of-a-laptop/#:~:text=A%20desktop%20computer%20emits%20778,electricity%20consumption%20when%20in%20use.
http://arxiv.org/abs/1801.03742
http://arxiv.org/abs/1801.03742
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
http://arxiv.org/abs/1603.09320
https://doi.org/10.48550/ARXIV.2210.07316
https://doi.org/10.48550/ARXIV.2210.07316
https://qwenlm.github.io/blog/qwen-moe/
https://qwenlm.github.io/blog/qwen-moe/

